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Abstract--Potential flow theory has been applied to study the shape and speed of an infinitely long 
bubble rising through flowing liquid in a vertical tube. In particular, the combined effects of surface 
tension and externally forced liquid motion are examined. An analytical formula for the bubble rise 
velocity in stagnant liquid is proposed, and shown to be in good agreement with experimental data for 
all values of surface tension. Numerical solutions for the bubble velocity in upward flowing liquid are 
obtained for laminar and turbulent velocity profiles. Approximate expressions for the bubble velocity, 
where the effects of liquid motion and surface tension are incorporated through the Reynolds and 
inverse Etitwos numbers, are proposed and compared with experimental data. The predicted changes 
in bubble shape have, to a large extent, been confirmed through comparisons with photographic 
evidence for a wide range of parameters. 

1. I N T R O D U C T I O N  

The motion of single, large gas bubbles through stagnant liquid in vertical tubes under the 
influence of gravity, has been studied theoretically by several workers: Dumitrescu (1943), 
Davies & Taylor (1949) and Collins et=al. (1978). Goldsmith & Mason (1962) included 
viscous forces, and Zukoski (1966) investigated the effect of surface tension experimental- 
ly. 

The present study was initiated by the results of a more extensive series of experiments 
(Bendiksen 1984) on the motion of long bubbles through nonstationary liquid. It was shown 
that for all tube inclinations, 0, the bubble propagation rate is well represented by 

vB ~CovL + Vo, [1] 

where vL is the average liquid velocity at infinity. For vertical or near vertical tubes with i.d. 
of about 2.5 cm, Co ~ 1.20 for Fr > 3.5, quite independent of Re-number (3 x 104-105), and 
Vo is close to the bubble rise velocity in stagnant liquid. The coefficient Co has been found to 
increase with decreasing Re-number, approaching 1.90 at Re --- 100 (Nicklin et al. 1962). 
Thus, the bubble appears to propagate at a rate slightly less than the maximum liquid 
velocity at infinity plus Vo. 

Collins et al. incorporated a dependency on the liquid velocity profile in their theoretical 
treatment, and obtained 

oB = ~ .  + ~ o 6 ( ~ . / ~ ) ,  [21 

where v, is the liquid velocity at the tube axis at infinity, and the function ~b (>__1) depends on 
the actual velocity profile. Their result, however, yields a value of Co slightly greater than the 
maximum to average liquid velocity ratio, e.g., 2.16 for laminar flow, but this apparent 
discrepancy with the experimental data will be shown to be due to their neglect of surface 
tension. 

The present study is concerned with the motion of a single bubble through liquid in an 
infinitely long vertical pipe of circular cross-section. The liquid is assumed to be at rest or 
obeying a parabolic velocity profile at infinity, but turbulent velocity profiles, assumed 
parabolic near the axis, will also be investigated. The velocity field caused by the bubble 
motion is assumed to be axis-symmetric and irrotational. 

A particular objective has been the combined effect of externally forced liquid motion 
and surface tension on bubble velocity and shape. The numerical solutions are found to be 
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well described by an extension of the Collins et al. formula [2], incorporating surface 
tension. The bubble velocity predictions also agree with the Nicklin slug formula [ 1 ], but the 
coefficients Co and v0 depending on the Re- and inverse E6twos-numbers. In short, the effect 
of more pointed liquid velocity profile is to increase the rise velocity, Vo, relative to that in 
stagnant liquid, and that of surface tension is to reduce it. The theoretical results have been 
compared with the data of Nicklin et al. (1962), Collins et al. (1978), Bendiksen (1984) for 
laminar and turbulent liquid flow and Zukoski (1966) for stationary liquid at infinity. 

2. T H E O R Y  

2.1 Basic equations 

A cylindrical coordinate system (r, 4', z) following the bubble is applied, as shown in 
figure 1. The neglect of viscosity is justified by observing that the growth of the two boundary 
layers created, at the wall and at the bubble surface, will be slow, and also prevented by the 
acceleration of the liquid around the bubble nose, provided the Re-number, Res = PLvBD/# is 
high. This treatment will therefore be limited to the inertia dominated regime, which covers 
most practical cases, and where Res > 100. Because these boundary layers are thin, the 
pressure distribution is well represented by irrotational flow when the bubble rises through 
stagnant liquid (Dumitrescu 1943) and by a rotational flow with a prescribed vorticity 
distribution far upstream when the bubble rises through flowing liquid. The effect of 
viscosity is then to generatethe actual velocity profile far upstream, whereas the liquid 
motion due to the bubble is assumed to be inviscid and irrotational (Batchelor 1980; Collins 
et al. 1978). Assuming rotational symmetry around the z-axis, and steady bubble motion, 
the vorticity, ~%, may be expressed as 

1( 02g' 02~/' 1 ~-~¢r) [3] 
+ o ,  , ' 

where ff is the stream function. 

Z, 11,V 

\ ~o,w 

0 

I - 
R 

r, ~ ,u  

Figure 1. The applied coordinate system. 
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For purely inertial flow under the influence of gravity, only, dimensional analysis yields 
vo = v~' ~ ,  and to obtain nondimensional equations we use 

77 = z /R ,  l~ = r /R ,  u* = u l  ~ ,  v* = v l  . f - ~ ,  d/* = ~bl~/gR 5, 

where the star indicates a dimensionless quantity, which will be subsequently dropped, 
whenever there is no possibility of confusion. 

The dimensionless bubble velocity may, without loss of generality, be expressed as 

vn = v., + C(Z,,v, .)  + Vo, [4] 

where Vo = vo(Z) is the rise velocity in stagnant liquid, and C(Z,,v, .)  is the deviation from Vo 
caused by an upward moving liquid at infinity with velocity vm at the tube axis. 

Assuming a parabolic (or zero) liquid velocity profile at infinity, the boundary condition 
at n = ~, in a frame of reference following the bubble nose, becomes 

vT(~)  = v . , (1  - ~ ' )  - o m  - c ( z , v , . )  - Vo [5]  

o r  

where 

¢'®(~) = - l/,~v,,,~'~ - l h v o , , , ~  z ,  [61 
2 

vo,. = Vo + C(Y~,v,.) [7] 

and the inverse E6twos number, ~ = ff/(plgR2). In the applied reference system the motion 
is steady, and with ~oz = % = O, ~o# may be obtained from [3] in nondimensional notation as 

~o, = 2v,.~. [8]  

Then [3] may be written on dimensionless form as 

a2~b a2~b 1 a~b 
a~j 2 + arfl ~ a~j 2 v " ~  [9] 

A solution of [9] is most easily obtained by decomposing the stream-function into its 
up-stream value and local deviation from this (see, for instance, Batchelor 1980, pp. 544): 

1 2 - -  Um ~4 
[10] 

Equation [9] then yields an equation for F 

02F 02F 1 OF F 
Or/--2 + 0-~ + ~ 0f ~2 = 0. [ l l ]  

A well-known solution of [11] satisfying the boundary condition u = 0 at the tube surface 
and being bounded everywhere, provided r/> - ~ ,  is obtained by the method of separation of 
variables, and is given by 

F(~,  7) = ~_. k,Ji (fl,~) e -a'", [121 
i 
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where/3; are the ith zeros of the Bessel function of the first kind and order. The complete 
stream-function is then 

Vo,. 2 _ u, .  f 4  ~ - ~ k , J , ( / 3 i ~ )  e -~'~ ~ ( f , '7 ) = - - -~-  f - ~  + f " , [131 

and the velocities are given by 

u = + ~ k ~ / 3 ; J | ( / 3 ; f )  e -~", 
i 

v = - V o , .  - v , . f  2 + ~_ .  k ; /3 ;Jo( (3 ; f )  e -~'~. 
i 

[14] 

2.2 B o u n d a r y  cond i t ions  

The conditions already satisfied in [13] and [14] are those at r /= +o~ ([5] and [6]) and 
at the tube surface, f = 1, where u(1, 77) = 0 for all 77. 

The boundary condition at the bubble surface is more complicated, due to the bubble 
shape being unknown. If the pressure in the bubble is assumed to be constant pO (pa << pL), 
the pressure in the liquid at the interface may be approximated as 

1) 
m(-z) = p~(:)  - ~ + ~ , [15] 

where R~, R~ are the effective local radii of curvature in and perpendicular to the rz-plane. In 
the applied coordinate system, z = r = 0 is a stagnation point, and assuming that the bubble 
surface is also a stream-line, Bernoullis equation yields 

_ _  1 p z ( z )  + (u 2 + v 2) - g l z l  pO [16] 

Substituting the liquid pressure, PL, from [ 1 5] we get 

u l + v  2 = 2 g l z ]  ---20" [ ( R ~ (  0 ) p L  + R ~ ( 0 ) ) -  (R--~(z) + R--~(z))] [17] 

or on nondimensional form 

= + - + . 

The radii of curvature are rather complicated functions, which will be derived from [13]. 
First, observe that [1 4] at the stagnation point (f = r/= 0) yields 

Vo,, = Xki/3~, [ 18] 

which determines Vo,, as a function of the constants k;,/3;. An equation for the bubble shape is 
then obtained from [13] and [18]: 

1 
[191 

on the bubble surface (~ = 0). 
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The other boundary condition [ 17], using [ 14] and [ 18], yields 

' [20]  

= 2 1 n 1 _ 2 . : ~ [ 1  1 ] 
Ro 

where I/R(~) = I/Rt(~) + I/Rz(~). 

Except for the surface tension terms Dumitrescu (1943) obtained an equivalent set of 
equations for the special case of no motion at ~ = +~ (v,, = 0). In order to solve [18]-[20], 

however, keeping three terms in the series expansion, he had to impose an additional 

boundary condition in ~ = -~. This replaces one of the equations, and reduces the complexity 
of the problem considerably, but it does lead to an overdetermined solution. Furthermore, he 

assumed a spherical bubble shape at origo, and this actually leads to a double solution. 
In the following, [ 18]-[20] are therefore solved directly, making no apriori assumptions 

on bubble shape. Provided an explicit equation for the bubble surface on the form n = n(~) 

may be found, the principal radii of curvature are easily shown to be given by 

, , { -I 1 
Ri(n----) + R2(n) = - °-~L + ~ ]  ] + ~ ~ 1 + / ~ ]  ] [211 

where the second term has to be replaced by its limit as ~ ---, 0. 

2.3 P o w e r  ser ies  so lu t i on  

The problem is now to determine the coefficients k,. so that ~, n satisfies [19] and [20] 
simultaneously. 

Retaining N terms in [19] and [20], there are three obvious angles of attack insolving 
the resulting 2N equations. The first is a purely numerical one; choosing different ~, i = 1, N 
we get 2N unknowns (kl, k2 . . . . .  kz, ~ ,  n2 . . . .  , ~u). Another approach is to utilize the 
orthogonality properties of the Bessel functions to get an explicit expression 7/ -  n(~). This 
method was investigated, and will work, provided the velocity profile in the film at ~ - - ~  
may be assumed known. This, however, seems a rather severe assumption, of the same nature 
as that of Dumitrescu (1943). Therefore, the expansion of the Bessel and exponential 
functions in power series, also applied by him, was finally chosen. 

A power series expansion of the Bessel and exponential functions in [19] to O(~ 6) is 
shown in the Appendix to yield an explicit equation for the bubble surface [A6] on the form 

- n(~). Similarly, the boundary condition [20] reduced to [A9]. Inserting the explicit 
expression for 7/into the boundary condition [A9], applying the radii of curvature from 
[A11], yields an equation in ~ ,  i = 1, 2, 3, only [A13]. 

The applied method of solution consists of collecting terms of order ~2, ~4, ~6 and 
determine the coefficients k~, i = 1,2, 3 from the three resulting equations. To avoid the last, 
and most complicated equation, Dumitrescu (1943) introduced the boundary condition in 
r / -  -oo, as remarked in the past section. 

After some algebra the equations become, from [A13] 

B1 = '/8B3. + 8 • 2;. B2- (bz - b~), [22a1 

5B~. - 4 B 2 B 4  - 2 B5 - 2B3° • v,,, - "~ a 2 B ;  I 

[22b] 

- ~ 72(b3 - 4b~b2 + 2b~) + 1 6 ~  (b2 - b~) - O, 
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[3{B B~. + 2B3.(B3 + z,,..)+ 2B2B~ B4 ] + B3B] 
t .  

+ ~B22,] + 5 B5 B3" - 3B3B, B3. + 5 B2B3B6 

I 
+ 2B2(I - v , . ) a 2  - ~ a 3  - ~, [64B3(b. + 30b~b2 - lOb, - 12b, b~ - 9b~b3) 

[22c] 

- 36Bs(b3 - 4b~b2 + 2b~)] = 0. 

These three equations yield the unknown coefficients B2-4, from which the k{s are obtained 
by solving the linear set [A2]: 

ki =Bin; m = 2  . . . . .  N +  1. [23] 
i 

Actually, the set [22] has to be solved iteratively, as the coefficients B,,, m >_ 5 also are given 
by [23]. This is not a closure problem, but rather a consequence of introducing the 
short-hand notation B,,; the real unknowns are the coefficients k~, i = 1, 3, for which we do 
have three equations. Incidentally, there is a closure problem associated with the surface 
tension terms, as stated in the~Appendix. If the interface condition [20] is sought to O(~6), 
because of the presence of first- and second-order derivatives of the bubble surface equation 
[19] it has to be of O(~ s) for-tile sixth-order term in [20] to be accurate. 

2.4 Numerical method 
Equations [22], [23] and [18] have been solved numerically for different values of 

surface tension parameter, Z, and liquid velocity in 7/ = oo, v,,. Since the coefficients bi = 
bi(Bj),j = 2, 8, an iterative procedure is required for the solution of B2-4 from [22] with Bs_ s 
from [23]. The outer loop yields B 3 from [22b]. For a given B 3 the inner iteration then 
consists of solving [22a, c] for B2 and B4, simultaneously. For 2; << 1 the B2-calculation may 
be decoupled from that of B4, which is a very significant simplification. It is also numerically 

I / D I /3  advantageous to start the B2-calculation with B2 /2o3, + A(p), where A << B3. If the 
resulting changes in B5-8 are greater than, say 1%, the outer iteration is repeated with the 
same B3-values, but with B, = (B °ld + B,"Cw)/2, n = 5 . . . .  8. For Z << 1 this proved 

unnecessary, if the initial values were properly selected, for example from the analytical 
expressions [30] or [31 ]. For E > 0.10 with N = 3 the method fails, as might be expected, due 
to the large deformation of the bubble requiring increasingly higher order terms in [19], 
[20]. However, as will be shown, in this region the analytical formulas still yield surprisingly 
good results. With our choice of coordinate system, Vo >- 0, and R0 -> 0 require B2, B 3 >__ 0. 
With this assumption we always found a unique solution, if it existed at all. 

2.5 Analytical expression for the bubble velocity 
Because of the surface tension terms, [22] had to be solved numerically. Based on the 

physical features of the problem, however, a very simple analytical expression for the bubble 
velocity may be obtained as follows. The basic idea is to reformulate [22a, b] in terms of the 
mean radius of curvature at the nose (p), and replace [22c] by a known relation 

p = p(Z). [241 

Then, from [A11] we get, with p = R,.(0), i = 1, 2, 

1 2B3 2B2 [25] 
P 2hi ai B3, " 
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Rearranging [22a] yields: 

l / t / 3  r 1 B2 2B2 = ,-,3~ t,  + 64 • Y,-~'- (b2 - 63)]  l b .  
lb ,  

Equation [25] then yields 

and 

wheref(p)  depends on N: 

B3o = [1 + 2; • f(p)]ff2 

B2 = i / 2 { ( 1 / p ) [ 1  + ~_,. f(p)]}i/2. 

f ( p )  = 64(B2/B3o)(b2 - b~). 

For N = 1, using [23] the computation is straightforward and yields 

and for N = 2 it becomes 

f2(P) = 4 [ - 5 p  -2 + 
t 

f i ( p )  = '/~ • p - '  

1 
3(/52- /31)[(/32 4/(~/2P]~2] ( 6 - - - ~  P) 

+ (~ -- ~1)(-~)2 (6 -- -~ P)]} " 

803 

[261 

[271 

[28] 

[29] 

For N _< 2 the closed expressions for the bubble velocity then follow from [23] and [18]. If 
N >__ 3 additional equations [22b, c . . . .  ] for the coefficients B4, B5 . . . .  are required, and 
these soon become prohibitively complicated. With N = 1, however, the calculation again is 
straightforward and yields 

Vo(~ ) -/~'1/2(1 + 4/32;p-2)1/2, [301 

where from [25] 

p = 4/~ I = 1.0439. 

For N = 2 [23] with Bm from [27] reduces, after some more algebra, to a rather simple 
expression 

( 4 )  
V o ( Z )  = 2 ~ p  -I/z 1 /5, +/32 p-I " [1 + 2; • fz(p)] l/z, [31] 

where/31 = 3.8317 and/32 = 7.0156. 
It follows from [30] that keeping the first term, only, although giving a rather accurate 

bubble velocity for ~. = 0, leads to an incorrect dependence on surface tension. The radii of 
curvature [24] may be obtained by the method of the past section, which yields relation [44], 
or from experiments. The relation [29] for f2 is well approximated for 2; ~< 0.7 by 

A = 5(1 - 1.72;), 
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when p is given by [44]. This simplifies [31 ] considerably: 

Vo(E) = 0.486,,/1 + 5(1 - 1.7Z)Z • 
1 - 0.96 e -° '°66/z  

1 - 0.52 e - ° °66 /~  
[32] 

A comparison with experiment to be presented in the next chapter (figure 2) shows very good 
agreement with [31] and [32] for all values of Z. 

2.6. Turbulent profiles 
Consider the following modification of [13]: 

~(~, n) = - ' / ,oom~ 2 - '/,3"~.~' + ~ ~ k,J,(#,~) e -~,  
i 

[331 

where 3' represents a deviation from the parabolic velocity profile at )7 = o~. Clearly [33] does 
not satisfy [3] at all points in the flow, except when it is parabolic at infinity (3" = 1), but it 
does describe a flow which is irrotational on the tube axis and close to the stagnation point, as 
any solution of [3] must be. As remarked by Collins et al. (1978), [33] will give an erroneous 
convection of vorticity around the bubble nose. Applying a particular turbulent velocity 
profile, however, being parabolic near the axis, is expected to reduce the effect of this 
deficiency. 

The liquid velocity profile at n = = is then replaced by the Pai approximation to the 
universal velocity profile: --- 

~ ( 6 )  = o,~[l  - 7 6  ~ - ( I  - 3")6~q, [341 

where n is a large, Re-dependent number. Applying the velocity defect law 

[~m - ~ A 6 ) ] / u ,  = ~ ( 6 )  [35] 

v:  

0 . 7  I I I I I I ~ " I  I I I I 

0 . 5 ~  

°"I 
0.3 

0.2 

0.1 

0 1  I I I I I I I \ I  \ l  i , . .  
0 0.2 0.~ 0.6 0.8 !.0 1.2 

Y 

Figure 2. The influence of surface tension (Z) on bubble velocity in stagnant liquid (Theoretical: 
- - -  3 terms,  - -  2 terms [31], - - -  l t e rm [30]. Exper imen ta l :  Zukosk i  (1966):  O A i r / W a t e r ,  

A A l c o h o l / W a t e r .  Bendiksen (1984):  [] A i r / W a t e r ) .  
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with the Reichardt's approximation to ~b 

q~(~) = 2.5 In [(1 + 2~2)/(1 - ~)] 

yields an approximation on the same form as the Pai profile [34] for ~ << 1: 

vL(~) = vm[1 - 3,~ ~] [36] 

and 3" = 7.5u,.  The friction velocity, u . ,  is defined by 

u ,  = 4-  1o, = -{L xll/2 f , [37] 

where rw is the shear stress at the wall. Specifying the friction factor,f, e.g., that of Collins et 
al. (1978), 

f - t l 2  = 3.5 log Re - 2.6, 

where Re = PLVLO/I, tl., yields the friction velocity and finally 3': 

7 = 7.514.12 + 4.95(1og Re - 0.743)] -l. [381 

The velocity profile [36] with 3' from [3_8] is then applied in [33]. Since a frame of reference 
following the bubble nose has been used, it suffices to replace [5] and [6] by 

vT(O = v,.(1 - 7~j 2) - vn = -Vo,.  - 3"v,,~ 2 [39] 

and 

[40] 

or to replace vm by 3'0,, in the equations to be solved [18]-[20]. The results will be presented 
in the next section. 

3. RESULTS 

3.1. Bubb le  mo t ion  

S t a g n a n t  l iquid.  The influence of surface tension on bubble velocity is shown in figure 2 
for v,, = 0. The theoretical values are presented for N = 1 - 3, and the measurements are 
from Zukoski (1966) and Bendiksen (1984). For Z = 0 v~' = 0.Sll ,  0.487 and 0.495, 
respectively, and the latter compares very well with that of Dumitrescu (1943) of 0.496 
based on asymptotic matching. Keeping the first term of the series [ 19] and [20], only, yields 
a somewhat too high value of 0.51 l, in contrast to that reported by Davies and Taylor (1949) 
of 0.464. The latter, however, was obtained for ~ = 1/2, and this, obviously, is inconsistent 
with the assumption ~ << l, permitting the higher order terms to be neglected. For ~ --, 0, the 
result of Davies and Taylor does, in fact, approach 0.511. 

The analytical expressions [31] and [32] are applied for Z > 0.10 with radii of curvatures 
at the nose from the theoretical calculation. For Z < 0.4 the predictions agree to within 1 --, 
5% for N >__ 2, whereas keeping the first term, only, is clearly insufficient to reproduce the 
observed dependence on surface tension. Although higher order terms in [19] and [20] are 
needed for Z > 0.1, the analytical expression [32] with p extrapolated from figure 6, [44], is 
surprisingly accurate. 

L a m i n a r  profi les.  A convenient way of representing the effect of a liquid velocity profile 
at infinity is through the distribution slip parameter, Co, defined by [ 1]. 
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It is seen from figure 3 that for 2; = 0, Co ~ 2.29 and the bubble actually moves faster 
than the center liquid at infinity, plus Vo. This is in accordance with earlier results for purely 
viscous flow with Vo = 0, where the acknowledged value is Co -~ 2.27 for 2; = 0 (Taylor 1962). 
This rather surprising result, also obtained by Collins et al. (1978) may be qualitatively 
understood from the Bernoulli equation [ 16]. A parabolic instead of a fiat velocity profile at 
infinity increases the liquid flow in the - n  direction close to the bubble surface, in a frame of 
reference attached to the bubble nose. This implies an increase in the rise velocity, and would 
cause a bubble drift velocity (vn > v,,) even in the limit of zero gravity. This added drift 
velocity is proportional to the liquid velocity, with, as will be shown, a coefficient of 
proportionality dependent on the velocity profile, 0.29 for laminar flow. This is the cause of 
the calculated increase in Co (figure 3). 

The effect of surface tension is to reduce the bubble velocity, and the combined effect is 
well described by an extension of the Collins et al. (1978) formula [2], in dimensional 
notation: 

U B = Ura + UO~(Um, 2;). [411 

For 2; < 0.1 the following extension of the Nicklin slug formula is recommended (see figure 

3): 

vn = 2.2.911 - 52;(1 - e-°'°5/z)]vL + v * ( 2 ; ) , f ~ ,  [42] 

where 0*(2;) is given by [32]._ 
The predicted value for Co of 1.94 for 2; = 0.046 is in reasonable agreement with the 

experimentally observed ones of from 1.80 to 1.95 (Nicklin et al. 1962). 
Turbulent  profiles. The numerical predictions for the bubble velocity are presented in 

figure 4 through the distribution slip parameter, Co, using the drift velocities, v*(2;), for 
stagnant liquid from figure 2. 

The numerical results are, as for laminar flow, well described by the Nicklin slug 
formula [1], but with coefficients Co,vo dependent on Re-number and 2;. For 2; < 0.1 the 
following extension of the Collins et al. (1978) formula for Co, reproduces the numerical 

2.5 

Co 2.0 

I I I [ 1 I I I I 1 

0 

O O O O O O O -- 
V v U U ~ U V 

,~ A A /5 /~ ^ A - 

1 . 5  I I I I I I I I I t 
0.05 0.10 

Vrn 

Figure  3. The dependence of Co [ 1 ] on l a m i n a r  l iquid veloci ty  a t  infinity (v~*) wi th  surface  tension as 
p a r a m e t e r  (02;  - 0, VZ - 0.0026, AZ = 0.013, - -  [42]).  
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Co 

1.3 

1.2 

I i J i i  I I I I I I i l l  I I I I I I l i l  I 

1.1 ~ ~ t ~ i [  I I ¢ i i I i i I  i i I t ¢ l l l l  
/4.10 a 10 4 IO s IO s 

Re 

Figure 4. The dependence of Co [1] on Re-number for turbulent liquid flow at infinity with surface 
tension as parameter (O, ~7, A, n x Z = 0, 0.0026, 0.013, 0.026, 0 . 0 6 5 , -  [43]). 

results very well (figure 4): 

Co = log Re + 0.309 [1 - '/2Z(3 - log Re e-°"/~)] [43] 
log Re - 0.743 

and v0(Z) = v*(~;) g - ~ ,  with v~* from [32]. 
The increase in bubble rise velocity due to the imposed liquid velocity profile decreases 

with increased Re-number, due to the flattening of the profile. 
Relation [43] has been compared with the air-water experimental data of Bendiksen 

(1984) in figure 5, and the agreement is good. The maximum to average liquid velocity ratio 

1.5 I i I I i I I I 

1.Z, 

Co 1.3 

1.2 

1.1 

0 

0 ~ 

1.0 i 
0 

O O -- 

I I I I I i I I 
5.10 4 I0 s 

Re 

Figure 5. A comparison of predicted and measured distribution slip parameters, Co (OZ = 0.042 
Data of Bendiksen (1984), - -  [43] with Z - 0.042, - - -  [43] with Z - 0). 
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2.0 I I I 

1 , 5  B 

p ~.o- 

0 . 5 ~  0 

ol l l l 
0 0.1 0.2 0.3 0.4 

I 

Figure  6. Predic ted radius of  c u rva tu r e  a t  origo, p, vs sur face  tension for v~, - 0 [ -  • - N - 3, - -  N = 
2, - - -  N - I,  O Data  of  Dumi t rescu  (1943)] .  

decreases from about 1.23 to 1.20 in the actual Re-number interval (3 x 104-105), and the 
measurements and predictions [43] are both below this, due to the effect of surface tension. 
Decreasing Z, for instance b y  increasing the tube i.d. (from the 2.42 cm applied in the 
experiments), would shift Co towards the upper curve in figure 5. 

3.2. Bubble shape 
The principal radius of curvature at origo with N terms in [ 19, 20], p, is shown in figure 6 

for N = 1 . . . . .  3. It is believed that the predicted fall in p with Z for N = 3 is slightly too 
large. The extrapolated values to be applied in the analytical velocity formula [31 ] are very 
well represented, for E _< 1, by 

p(~) = po(l - c, e-C'/z), [ 4 4 ]  

where p0 = 0.795, ct = 0.5173, and c2 = 0.0661. The predicted decrease in p with increasing E 

0 8 1  I I I I I I I I I 

I ' , ,  

0 .6  - 

o 5 • 

~ "  ~ "  ~ :  = 7..2.=..: - - -  = - . = - ~  

O . l .  - 

I I I I I I I I I 
O.OS 010 

I 

0.3 

0 .2  

Figure  7. Predic ted  and measu red  effects of  liquid mot ion a t  infinity and surface  tension on bubble  
shape  at  origo (p) (Predictions: - -  v*  - O, - - -  v *  - 0.05, - .  - v*  - 0.10. Da ta  of  Collins et al. 

(1978):  O r *  ~ 0.05, Vv,,* ~ 0.10, Da ta  of  Bendiksen (1984):  O r *  - 0.07, l v *  - 0.9). 
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has been confirmed by the experiments of Dumitrescu (1943) (figure 6). For large E 
increasingly higher order terms are required, as well as the incorporation of the exact bubble 
surface equation [A3] in the calculation of RI, R2, to represent the break-point near the 
wall. 

The substantial increase in complexity, however, makes this an extremely doubtful 
procedure, particularly in view of the methodical limitations, and the only marginal potential 
improvements with respect to the velocity formula [31 ]. 

A last important effect is the predicted increase in curvature near origo caused by liquid 
motion at infinity (figure 7). This has been qualitatively confirmed by photographic evidence 
from a series of experiments (Bendiksen 1984; Collins et al. 1978). Actually this effect was 
observed for other inclinations as well, even in horizontal tubes. 
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APPENDIX: COEFFICIENTS OF THE POWER SERIES EXPANSION 

Consider the following power series expansions of the Bessel and exponential functions to 
the sixth order in ~ and fourth order in 77: 

(3!) 2 

1 /3; 3 3 

2 2 [fl,~2 2 3 3n3 
e-a"= 1 - 2 + ~ / ~ -  ) r/ - ~ + ~ + 0(775)- • • 

Define the constants B,, by 

. . .  B,,,= k m = 2 ,  , N +  1. 
i - I  

[ a l ]  

[A2I 
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The bubble surface equation [ 19] is then to the order O(~ 6) and 0(7/3) for ~ 4= 0: 

• - '/2 ~ k,¢~,. - ½ t:5 + = 4 " ~ ~ .  k/Jl(/3,~) e -¢'" 0. 

Applying the expansions [A1] yields 

- 1.-~. , +  ~+2.~. ,  -3.-~., + . . . .  . a~-l.-~.,.. +2.~., ~' 

22( Bs 2 B7 ~ 23( B6 )~ 
2! a 3 -  1.-~.~ + 2.-~. ~' ~-T. ,  a ' -  l.-~.,~ 3 = 0  

From Dumitrescu (1943), Davies and Taylor (1949) and others, we know that for small X, at 
least, the bubble shape is nearly spherical at its nose, and ~7 is at least of order 2 in ~. Thus to 
O(~ 6) we have 

( B4 2 B6 ~ 
-%B4~ 3 + [2B3 - Bs~Z]r/z - 2 B2 - T ~ + 1"2 ~ 

[A3] 
1( 2 ~  Bs ' 4 -  B7 ~6 - I B ~ +  ~ + ~ 5  ~ =0.  

i 

A natural next step would be to represent 71 by a power series function of ~2, possibly 
spherical near origo, as assumed byDumitrescu (1943). With surface tension effects present, 
however, the bubble shape near origo will be quite deformed, and the above approximation 
becomes too crude. Instead we solve for n from [A3], considering it a second order equation 
in n 

n = 2 B2 - -~- + ~4 B4 ~2 B6 4 2 

• B3 + - -~ + --~ - %B4)) 3 • [2(2B3 - Bs~2)] -1. 

With the actual choice of coordinate system, the bubble surface is completely below origo, 
and the negative sign must be retained. Expanding the square root in powers of ~2 we get to 
0(~:): 

{( )-,, 
- Bf 2 ~i2 -12-(b - I/4a2)~i4 +16-(3c - 3/zab 

where 

a = ( B ]  + I/2B3v,,, - B 2 B , ) B f  2, 

b - (y4B] - 2/3B3Bs - I/4Bsvm + I/6B2B6)Bf z, 

c - l l l~(al  - a , s ,  + II, B3B7 + % a , , ? ) B ~  ~. 

Rearranging [A4] in increasing order of ~ we finally get 

r/= ( -a l~  2 - a2~ 4 - a 3 ~  6)  • [2(2B3 - Bs~j:)] -1, 

[A4] 

[AS] 

[A6] 
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where B3. = B3 + v,.12. 

aI = (B3/B2)B3,,  

a2 = B2[b - I/4a 2 -  I/6(B6/B2)], 

a3 = 5B2(3c - 3/2ab + 5aa). 

[A71 

Equation [A6] is an explicit one for r~; i.e., if the coefficients Bm are known, the bubble shape 
near origo may be obtained. With N = 3 in [19] and [20] three of the coefficients Bin, m 
2, 4 may be obtained from [20] as follows. 

Firstly, the expansion [A 1 ] is substituted in [20], yielding to O(~ 6) 

[4(B~ 2 - B2B4~' + I/4B24~ 6) + 2/3B2B6~ 6 - 16B2B3~2r/+ 8(B3B4 + B2Bs)~4~ 

+ 16BzB4~2rt2 + 16B]~2n 2] + {4(B2~ ' -  I/2BsB3~ 6) 

- 16(-B3,~ 2 + l/4Bs~ 4) • [(B2 - B4~2)n - B3n 2] 

+ 16(B~ - 2B284~2)~ 2} = 21~1 - 2 • Z[2/Ro - 2/R(rl)]. 

[A8] 

Rearranging this equation, we get 

a~,~ 2 + (BL - B~B,)~' + (I/,8,~ + 'DB2B~.- '/iB~B~)~ ~ 

+ [2B2v,.~ 2 - (2B3B4 + 2B4vm - B2Bs)~']0 + [-(2B3v..  + 4B2B4)~ 2 + 4B2Z]r/2 

= 'k 1,71 - '/2Z[1/Ro - I / R ( ~ ) ] .  

[A9I 

To proceed expressions for the radii of curvature are needed. Approximating the surface 
equation, [A3] with a power series in ~2, ~ = - Z ~ . I  I bil ~u in [21], differentiating with 
respect to ~, yields 

O~ N+I 
0--~ = -- ~ 2ibi~2i-I 

i - I  

and [A10] 

where 

N+ I 
02rt ~ 2i(2i - 1)b~ 2~'-I~, 
O~ 2 i-1 

Thus 

bl ~ a l l4Bs ,  

b2 = ( -2B3b  2 + B4bl - 1/12Bs)/2B~, 

b3 = ( - 4 B 3 b t b 2  + Bsb~ + B,b2 - V6B6b: + I/I**B7 - '/3B4a])/2B2, 

b4 = [-2B3(b22 + 2bib3) + 2Bsblb2 + B4b3 - I/6B6b2 - 4B4b2b2, 

- (1/4!5! - 2/3!4!)Bs - V6BTb 2 + 2/3B,b~]/2B2. 

2 / R o  = 2bl + 2bt = 4bi. 
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Obviously, including all surface tension terms of order six, requires the bubble surface 
equation [A6] to be of order O(~8), and this was done in order to obtain b4. Then, from [21] 
after some algebra, we get 

1 

R , ( n )  
- -  = 26, + 12(b2 - b~)~: + 30(b3 - 4b~b2 + 2b~)~ 4 

+ 28(b4 - 12btb z - 9b~b3 + 30b~b2 - 10b~)~ 6 
JAi l ]  

and 

1 

R 2 ( , )  
= 2b, + 4(bz - b~)~ 2 + 6(b3 - 4b~b2 + 2b~)~ 4 

+ 4(b4 - 12b,b~ - 9b~b3 + 30b~b: - 10b~)~ 6. 

It is now easily ascertained that  for a spherical bubble surface the expressions in the brackets 
are zero to O(~j6); thus the curvatures are constant and equal for all ~, as they should. 

From [A11] the surface tension term in [A9] becomes 

1 X [ 1  1 ] 1 ~1 
- 2  /~0 R(-rl) = 2 Z [16 (b2 - b~) + 36(b3 - 4b~b2 + 2b~)~ 4 

+ 32(b4 - 12b~b~ - 9b~b 3 + 30b~b 2 - 10b~)~ 6] 

Inserting [A6] for rt and [A12] in [A9] finally yields 

[AI2I 

[ , ]{ 4B3 B2, - -~ at - 8Y~(b2 - b~)4B3 ~2 + 5B3B]. _ 4BzB3B4 - 2B~B5 - 2B3B3.v,.,, 

- ~ a z - Z .  1 8 ( b 3 - 4 b ~ b 2 +  2b~)4B3-  1 6 B , ( b 2 - b ~ )  (4 

+ B~. + 2B3~B3(B3 + v.,)  + 2B2Bs B4 + B3 • B~ [A131 

1 
+ 2B2(1 - vm)a2 - ~a~ + (E 3 } 2 

- ~B5 "" 2 B~] B30 - 3B3B5 B3o + ~ B2B3B6 

- ~ [64B3(b4 - 12b,b 2, - 9b~b3 + 30b~b., - 10b~) 

- 36B5 • (b3 - 4b~b2 + 2b~)]) ~ 6 = 0. 


